

CARINGBAH HIGH SCHOOL

2013

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11–16, show relevant mathematical reasoning and/or calculations

Total marks – 100

- Section I Pages 2–5 10 marks
- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II Pages 6–12

90 marks

- Attempt Questions 11–16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

- 3 Let α , β and γ be the roots of the cubic equation $x^3 5x^2 + 13x 7 = 0$. Which of the following is the equation with roots α^2 , β^2 and γ^2 ?
- (A) $7x^3 13x^2 + 5x 1 = 0$ (B) $x^3 + x^2 + 99x 49 = 0$

(C) $x^3 + 5x^2 - 13x - 7 = 0$ (D) $49x^3 + 99x^2 + x - 1 = 0$

4 Given that $x^2 + y^2 + xy = 12$, which of the following is true?

(A)
$$\frac{dy}{dx} = \frac{2x + y}{2y + x}$$
 (B)
$$\frac{dy}{dx} = -\frac{2x + y}{2y + x}$$

(C)
$$\frac{dy}{dx} = \frac{2x - y}{2y + x}$$
 (D)
$$\frac{dy}{dx} = \frac{-2x + y}{2y + x}$$

5 The equation |z - 1 - 3i| + |z - 9 - 3i| = 10 corresponds to an ellipse in the Argand diagram. Which of the following is the complex number corresponding to the centre of the ellipse?

(A)
$$5+3i$$
 (B) $-5+3i$

(C)
$$-5-3i$$
 (D) $5-3i$

- 6 The point $T(acos\theta, asin\theta)$ lies on the circle $x^2 + y^2 = r^2$. Which of the following gives the equation of the tangent at *T*?
- (A) $x\cos\theta + y\sin\theta = a$ (B) $x\cos\theta y\sin\theta = a$
- (C) $x\cos\theta y\sin\theta = a^2$ (D) $x\cos\theta + y\sin\theta = a^2$

The point *P* lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The chord through *P* and the focus *S*(*ae*, 0) meets the ellipse at *Q*. The tangents to the ellipse at *P* and *Q* meet at the point *T*(*x*₀, *y*₀), so the equation of PQ is $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$. (Note that *T* lies on the directrix).

What is the value of the ratio $\frac{PS}{ST}$, given that this ratio is constant?

(C) $\frac{a}{e}$ (D) e

8 Suppose $\omega^3 = 1$, $\omega \neq 1$ and k is a positive integer.

What are the two values of $1 + \omega^k + \omega^{2k}$?

(C) 1,0 (D) None of the above

10 Given that $\cos(a + b)x + \cos(a - b)x = 2\cos(ax)\cos(bx)$, which of the following is the answer for

$$\int \cos(3x)\cos(2x)\,dx ?$$

(A)
$$\frac{1}{2}(\cos 5x + \cos x) + c$$
 (B) $\frac{1}{10}\cos 5x + \frac{1}{2}\cos x + c$

(C) $\frac{1}{10}sin5x + \frac{1}{2}sinx + c$ (D) $\frac{1}{2}(sin5x + sinx) + c$

END OF MULTIPLE CHOICE QUESTIONS

Section II

90 marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In

Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW booklet.

(a)

Find

(i)
$$\int \frac{t^2 - 2}{t^3} dt$$
 2

(ii)
$$\int xe^x dx$$
 2

(iii)
$$\int \frac{2x}{(x+1)(x+3)} dx$$
 3

(b) By using the substitution u = x - 4 evaluate

$$\int_{4}^{4\cdot 5} \frac{dx}{\sqrt{(x-3)(5-x)}}$$
 3

(c) (i) If
$$u_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx, \quad n \ge 2$$
 3

prove that

$$u_n = n \left(\frac{\pi}{2}\right)^{n-1} - n(n-1)u_{n-2}$$

(ii) Hence evaluate $\int_{-\infty}^{\frac{\pi}{2}} x^2 sinx \, dx$

2

Marks

Question 12 (15 marks) Start a NEW booklet.

(a)		The complex number w is given by $w = -1 + i\sqrt{3}$.	
	(i)	Show that $w^2 = 2\overline{w}$.	2
	(ii)	Evaluate $ w $ and $\arg w$.	2
	(iii)	Show that w is a root of $w^3 - 8 = 0$	1

Marks

3

2

(b) Sketch the locus of z satisfying:

(i)
$$Re(z) = |z|$$
 2

(ii) Both
$$Re(z) \ge 2$$
 and $|z-1| \le 2$

(c) Given that *a* and *b* are real numbers and

$$\frac{a}{1+i} + \frac{b}{1+2i} = 1$$

find the values of a and b.

(d) The complex numbers z_1, z_2, z_3 and z_4 are represented in the complex plane by the points **3** A, B, C and D respectively.

If $z_1 + z_3 = z_2 + z_4$ prove ABCD is a parallelogram.

Question 13 (15 marks) Start a NEW booklet.

- (a) The equation $x^3 + bx^2 + x + 2 = 0$, where *b* is a real number, has roots α, β, γ .
 - (i) Obtain an expression, in terms of *b*, for

$$\alpha^2 + \beta^2 + \gamma^2$$

- (ii) Hence determine the set of possible values of *b* if the roots of the above equation are all real. 1
- (iii) Write down the equation whose roots are

$$2\alpha, 2\beta, 2\gamma$$

- (b) Given that the polynomial $P(x) = 8x^4 36x^3 66x^2 35x 6$ has a zero of multiplicity **3**, find all the zeros of P(x).
- (c) If z represents a complex number such that $z^5 = 1$, where $z \neq 1$.
 - (i) Deduce that

$$z^2 + z + 1 + \frac{1}{z} + \frac{1}{z^2} = 0$$

- (ii) By substituting $x = z + \frac{1}{z}$ reduce the equation in (i) to a quadratic in x.
- (iii) Hence deduce that

$$\cos\frac{2\pi}{5}\cos\frac{4\pi}{5} = -\frac{1}{4}$$

2

2

2

2

Question 14 (15 marks) Start a NEW booklet.

(a) The points *A*, *B*, *C* and *D* lie on the circle C₁. From the exterior point *T*, a tangent is drawn to point *A* on C₁. The line *CT* passes through *D* and *TC* is parallel to *AB*.

- (i) Copy or trace the diagram on to your page.
- (ii) Prove that $\triangle ADT$ is similar to $\triangle ABC$.

The line *BA* is produced through *A* to point *M*, which lies on a second circle C $_2$. The points *A*, *D*, *T* also lie on C $_2$ and the line *DM* crosses *AT* at *Q*.

- (iii) Show that ΔQMA is isosceles.
- (iv) Show that TM = BC.

(b) (i) Prove that the normal to the hyperbola xy = 4 at the point $P(2p, \frac{2}{p})$ is given by

$$p^3x - py = 2(p^4 - 1)$$

(ii) If this normal meets the hyperbola again at
$$Q(2q, \frac{2}{q})$$
 prove that $p^3q = -1$.

(iii) Hence prove that there exists only one chord which is normal to the hyperbola at both ends and find its equation.

Question 15 (15 marks) Start a NEW booklet.

3

2

2

(a) Find the equation of the ellipse with centre the origin, which has a focus at (2,0) and the 3 corresponding directrix is x = 4.

(b)

The diagram shows the graph of the function y = f(x)

Draw separate sketches of the following:

(i)	y = f(-x)	1
(ii)	$y = \frac{1}{f(x)}$	1
(iii)	y = f(x)	1
(iv)	$y = \ln(f(x))$	2
(v)	$y = e^{f(x)}$	1

(vi)
$$x = f(y)$$
 1

1

Question 15 continues on the next page.

(c) The base of a solid is the semi-circular region of radius 1 unit in the x-y plane as illustrated in the diagram below.

Each cross-section perpendicular to the *x*-axis is an isosceles triangle with each of the two equal sides three quarters the length of the third side..

(i) Show that the area of the triangular cross-section at x = a is

$$\frac{\sqrt{5}}{2}(1-a^2).$$

(ii) Hence find the volume of the solid.

3

(a) P(4,6) and Q(14,24) are two points on the hyperbola

$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$

M is the midpoint of PQ and O(0,0) is the origin. The tangents to the hyperbola at P and Q intersect at the point R. Show that the points R, O and M are collinear.

You may assume that the tangent to this hyperbola at $T(x_1, y_1)$ has equation

$$\frac{x_1 x}{4} - \frac{y_1 y}{12} = 1$$

(b) A particle is moving so that $\ddot{x} = 18x^3 + 27x^2 + 9x$. Initially x = -2 and the velocity, *v*, is -6. It is known that the velocity is always negative.

(i) Show that
$$v^2 = 9x^2(1+x)^2$$
. 2

$$\int \frac{1}{x(1+x)} dx = -3t$$

$$\frac{1}{x(1+x)} \equiv \frac{a}{x} + \frac{b}{1+x}$$

(iv) Show that for some constant c,

$$\log_e\left(1+\frac{1}{x}\right) = 3t+c$$

(v) Using this equation and the initial conditions, find x as a function of t.

(c) The angles A, B and C are consecutive terms in an arithmetic series. Show that $\cos(A)\cos(C) - \cos^2(B) = \sin(A)\sin(C) - \sin^2(B).$

END OF EXAM

Marks

2

1

2

2

Candidate Name/Number: _____

Multiple choice answer page. Fill in either A, B, C or D for questions 1-10.

This page must be handed in with your answer booklets

1.	
2.	
3.	
4.	
5.	

6.	
7.	
8.	
9.	
10.	

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE : $\ln x = \log_e x$, x > 0

CARINGBAH HIGH EXTENSION I 2013	$U = \frac{1}{2}$
THSC SOLUTIONS	= [
QL QLA	J =0 11-02
92 D Q7 D	
Q3 B Q8 A	= LSIN O
Q4 B Q9 D	- # -0
Q5 A Q10 C	- 7
$\begin{bmatrix} 911 \\ 0 \end{bmatrix} \int \frac{t^2 - 2}{t^3} dt = \int (\frac{1}{t} - \frac{2}{t^3}) dt$	$\bigcup_{n=1}^{n} \bigcup_{n=1}^{n} \bigcup_{n$
$= \int (\frac{1}{4} - 2t^{-3}) dt$	ر ^۳ /2
$= \ln t + \frac{1}{t^2} + c$	x + n + n
<u> </u>	Now use parts
$\int x e^{x} dh = x e^{x} - \int 1 e^{x} dh$	$= n \left[x^{n-1} \sin^2 x \right]$
$= xe^{\chi} - e^{\chi} + c$	
	$= n \left(\left(\frac{\pi}{2} \right)^{N-1}, s_{1}, \frac{\pi}{2} \right)$
$ \begin{array}{c} (11) \\ I^{2} \end{array} \\ \left(\begin{array}{c} 22 \\ (x+1) \\ (x+1) \\ \end{array} \right) \\ \left(\begin{array}{c} 22 \\ dx \\ \\ (x+1) \\ \end{array} \right) \\ \left(\begin{array}{c} 32 \\ dx \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$(\underline{\pi})^{n-1}$
$2x \equiv a(x+3) + b(x+1)$	
$x=-1 \Rightarrow a=-1$	$(1) n=2 \implies U_2=2$
x=-3 => b=3	= 77
$\therefore I = \int (\frac{-1}{x+1} + \frac{3}{x+3}) dx$	
o Land La Martin	= 11
$= 3 \ln \left[7 + 3 \right] - \ln \left[7 + 1 \right] + C$	= # -
$= \left n \left \frac{(n+3)}{n+1} \right + c \right $	====
	$\log w = -1 + i$
$\sqrt{(x-3)(5-x)}$ $x=4$, $U=0$	= 1-3
Tf U=x-4	=-2 -
u=0.5 $du=dx$	<i>□</i> = −1-
1.du	2.7 = 2(-
J TG+0X1-0)	=-2
Ū20 Č	

- du 1/2]0 $\frac{\pi}{2} + n \int x^{n-1} \cos x \, dx$ n-1 cosx. dx a second time. $\int_{0}^{\frac{1}{2}} \frac{\pi}{2} \int_{1}^{\frac{1}{2}} \frac{\sqrt{2}}{2} \int_{1}^{\frac{1}{2}} \frac{\sqrt{2}$ - 0) - n (n-1) Un-2 n (n-1) U n-2 (T) -2.1. U. $-2\int_{U}^{T/2}\sin x dx$ $+2\left[\cos x\right]_{0}^{T/2}$ +2 (0-1) 2 F3. F3)(-1+iE) 3-2133 2:53 - 153 (21-1 -215 2 ل 6

(i)
$$|w| = \sqrt{1+3} \quad \arg(u = \frac{\sqrt{3}}{3})$$

$$= \frac{2}{8} \int_{1}^{1} \int_{1}^{1} (w) = \frac{1}{2} \int_{1}^{1} (w) = \frac{1}{3} \int_{1}^{1} (w) = \frac$$

(b)
$$P'(x) = 32x^3 - 108x^2 - 132x - 35$$

 $P''(x) = 96x^2 - 216x - 132$
 $= 12(8x^2 - 18x - 11)$
 $= 12(2x+1)(4x-11)$
 $\therefore x = -1/2 \text{ w } \frac{11}{4}$
 $P(\frac{11}{4}) \neq 0$, $P(-1/2) = 0$
 $-1 \cdot P(x) = (2x+1)^3 Q(x)$
 $= (2x+1)^3 \cdot (x-6)$
 $-1 \cdot x = -1/2 \cdot -1/2 \cdot -1/2 \cdot 6$

(b) (i)
$$y = \frac{y}{x}$$

 $y' = -\frac{y}{x^{2}}$
 $= -\frac{1}{4p^{2}}$
 $= -\frac{1}{p^{2}}$
 $h_{Mp} = p^{2}$
 $\therefore y - \frac{2}{p} = p^{2}(x-2p)$
 $p_{Y} - 2 = p^{3}x - 2p^{4}$
 $p_{Y} - 2 = p^{2}(x-2p)$
 $p_{Y} - 2 = p^{3}x - 2p^{4}$
 $p_{Y} - 2 = p^{2}(x-2p)$
 $p_{Y} - 2 = p^{3}x - 2p^{4}$
 $p_{Y} - 2 = p^{2}(x-2p)$
 $p_{Y} - 2 = p^{$

(i) By symmetry
$$q^{3} p = -1$$
 also
 $\therefore p^{3} q = pq^{3}$
 $\propto p^{3} q - q^{3} p = 0$
 $p1(p^{2}-q^{2})=0$
 $p2(p-1)(p+1)=0$
 $\therefore pq=0 - mot passible$
 $x p=q - mot passible$
 $\therefore p=-q$.
 $y^{3}-q=-1$
 $q^{4}=1$
 $\therefore q=\pm 1$
 $\therefore p=(\pm 2, \pm 2)$
 $\therefore churd is y=x: -2 \le x \le 2$
(a)
 $ae=2 - (b)$
 $q/e=4 - (c)$
 $(bx(2) =) a^{2} = 8$
 $(b \pm (b) =) e^{2} = 1 - \frac{b^{2}}{a^{2}}$
 $= 1 - \frac{b^{2}}{8}$
 $y = 8 - b^{2}$
 $b^{2} = 4$
 (c)
 $y = 4 - (c)$
 $y = 8 - b^{2}$
 $y = 8 - b^{2}$
 $y = 4 - (c)$
 $y = 4 - (c)$
 $y = 8 - b^{2}$
 $y = 8 - b^{2}$
 $y = 4 - (c)$
 $y = 4 - (c)$
 $y = 8 - b^{2}$
 $y = 4 - (c)$
 (c)
 (c)
 (c)

(S)

$$t=0 \quad x=-2$$

$$\int \ln f(x) = c'$$

$$3t+\ln 2$$

$$= \frac{1}{2}e^{3t}$$

$$\frac{1}{2}x = \frac{1}{2}e^{3t}$$

$$x = \frac{1}{2}e^{3t}$$

$$x = \frac{1}{2}e^{3t}$$

$$x = \frac{1}{2}e^{3t}$$

 \odot

(c)
$$AP \implies A, BC \equiv B-d, B, B+d$$

so we need only show.
 $\cos A \cos C - \sin A \sin C = \cos^2 B - \sin^2 B$
 $= \cos(2B)$

$$LHS = \cos (A+c)$$

= cos (B-d + B+d)
= cos (2B)
= RHS