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Section |

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 Which of the following are the foci for the ellipse

x2 y2

? + E =1
(A) 0, + ﬂ) B)  (+V7,0)

T4
©) (0, +V7) (D) (3_\/7 0)
4 i)

2 Which is the correct answer to the following integral?

v

fi sin’ (x)cos*(x) dx

(A) (B)
i \ 1024 — 533v2

2x L sin’ (x)cos*(x) dx 36960

(©) (D)
1024 — 5332 zero
36960
3 Let @, f and y be the roots of the cubic equation x3 — 5x2 + 13x — 7 = 0 .Which of the
following is the equation with roots a2, 82 and y?2 ?

(A) 7x3—13x2+5x—-1=0 (B) x3+x*+99x—-49=0
(C) x3+5x2-13x—-7=0 (D) 49x3+99x2 +x—-1=0



(A)

(©)

(A)

(©)

(A)

(©)

Given that x2 + y? + xy = 12, which of the following is true?

dy 2x+y (B) dy 2x+y
dx 2y+x dx  2y+x
dy 2x-y (D) dy -—-2x+y
dx 2y+x dx 2y+x

The equation |z — 1 — 3i| + |z — 9 — 3i| = 10 corresponds to an ellipse in the Argand
diagram. Which of the following is the complex number corresponding to the centre of the

ellipse?
5+ 3i (B) =5 + 3i
—5—3i (D) 5-3i

The point T (acos6, asin®) lies on the circle x + y? = r2 . Which of the following gives
the equation of the tangent at T?

xcos0 + ysin@ = a (B) xcosf — ysinb = a

xcos0 — ysin@ = a* (D) xcos@ + ysinf = a?



The point P lies on the ellipse Z—i + Z—j = 1. The chord through P and the focus S(ae, 0)

meets the ellipse at Q. The tangents to the ellipse at P and Q meet at the point T (x,, y,), SO
the equation of PQ is =2 + 222 = 1_(Note that T lies on the directrix).

a? b2

y ¢4

v

o
N~ X

What is the value of the ratio g , given that this ratio is constant?

(A) e (B) ae

€ 2 (D) e
e

8 Suppose w3 =1, w # 1 and k is a positive integer.

What are the two values of 1 + w* + w2k ?

(A) 3,0 (B) 3,1

© 1,0 (D) None of the above



9 Which of the following is the graphof |z—1—i| <27?

(A) (B)

v

(©) (D)

10 Given that cos(a + b) x + cos(a — b) x = 2 cos(ax) cos(bx) , which of the following is
the answer for

J cos(3x) cos(2x) dx ?
(A) %(COSSx + cosx) + ¢ (B) :—OCOSSx + %cosx +c
© l—losinSx + %sinx +c (D) %(sinSx + sinx) + ¢

END OF MULTIPLE CHOICE QUESTIONS
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Section 11

90 marks
Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In

Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW booklet.

(@) Find
(i) t2 -2
=
(if) fxex dx

(iii) 2x
f(x+ Dx+3)

(b) By using the substitution u = x — 4 evaluate

J-4--5 dx
s Ja-3G-2

© @ If

T
2

U, = ] xMsinx dx, n=2
0

prove that

T n—-1
U, =n (E) —nn—Du,_,

(i)  Hence evaluate

T

2, .
x“sinx dx
0

Marks



(@)

(b)

(©

(d)

Question 12 (15 marks) Start a NEW booklet.

(i)

(i)

(iii)

(i)

(i)

The complex number w is given by w = —1 + iv/3.

Show that w? = 2w.

Evaluate |w| and argw.

Show that wisarootofw3 —8=0

Sketch the locus of z satisfying:

Re(z) = |z|

BothRe(z) > 2and |z—1| <2

Given that a and b are real numbers and

a b

+ =1
T+i 142

find the values of a and b.

The complex numbers z;, z,, z; and z, are represented in the complex plane by the points

A, B, C and D respectively.

If z, + z3 = z,+ z, prove ABCD is a parallelogram.

Marks

w



Question 13 (15 marks) Start a NEW booklet. Marks

@ The equation x3 + bx? + x + 2 = 0, where b is a real number, has roots a, 3, y.
(i)  Obtain an expression, in terms of b, for 2
a’ + % +y?
(i)  Hence determine the set of possible values of b if the roots of the above equation are all real. 1
(iii)  Write down the equation whose roots are 2
2a,20, 2y
(b) Given that the polynomial P(x) = 8x* — 36x3 — 66x% — 35x — 6 has a zero of multiplicity 3
3, find all the zeros of P(x) .
(© If z represents a complex number such that z° = 1, where z # 1.
(i)  Deduce that 2
1 1
z2+z+1+-+—==0
Z Z
(i) By substituting x = z + i reduce the equation in (i) to a quadratic in x. 2
(iif) Hence deduce that 3
21 4r 1
coS 5 coS 5 = 4



Question 14 (15 marks) Start a NEW booklet. Marks

@) The points A, B, C and D lie on the circle C ;. From the exterior point T, a tangent is drawn
to point A on C 1. The line CT passes through D and TC is parallel to AB.

C, T

o

(i)  Copy or trace the diagram on to your page.

(i)  Prove that AADT is similar to AABC. 3

The line BA is produced through A to point M, which lies on a second circle C ,. The points
A, D, T also lie on C , and the line DM crosses AT at Q.

(iii) Show that AQMA is isosceles. 2
(iv) Showthat TM = BC. 2
(b) () Prove that the normal to the hyperbola xy = 4 at the point P(2p, %) is given by 2

p*x —py =2(p* - 1)

(i) I this normal meets the hyperbola again at Q(Zq,é) prove that p3q = —1. 2

(iii) Hence prove that there exists only one chord which is normal to the hyperbola at both ends 4
and find its equation.

Question 15 (15 marks) Start a NEW booklet. Marks



@ Find the equation of the ellipse with centre the origin, which has a focus at (2,0) and the 3
corresponding directrix is x = 4.

(b)
A y
14+ >
T } > X
-1 1

The diagram shows the graph of the function y = f(x)

Draw separate sketches of the following:
0 y=f(=x) 1
i 1 1

i)
(i) y = f(lx]) 1
(iv) vy =In(f(x)) 2
(V) y = ef () 1
vi) x=f(Q) 1

Question 15 continues on the next page.
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(c) The base of a solid is the semi-circular region of radius 1 unit in the x-y plane as illustrated
in the diagram below.

Each cross-section perpendicular to the x-axis is an isosceles triangle with each of the two
equal sides three quarters the length of the third side..

(i)  Show that the area of the triangular cross-section at x = a is

V5

7 (1 - az).

(i)  Hence find the volume of the solid.

11



(@)

(b)

(©)

Question 16 (15 marks) Start a NEW booklet. Marks

P(4,6) and Q(14,24) are two points on the hyperbola 3
x2 y2
v

M is the midpoint of PQ and 0(0,0) is the origin. The tangents to the hyperbola at P and Q
intersect at the point R. Show that the points R, O and M are collinear.

You may assume that the tangent to this hyperbola at T (x;, y;) has equation

nx yw_
4 12

(Do NOT prove this.)

A particle is moving so that ¥ = 18x3 + 27x? + 9x .

Initially x = —2 and the velocity, v, is -6. It is known that the velocity is always negative.

(i)  Show that v? = 9x2(1 + x)2. 2

(i)  Hence, or otherwise, show that 2

(iii) Find a, b such that 1

(iv) Show that for some constant c, 2

1
loge<1+;)=3t+c

(v)  Using this equation and the initial conditions, find x as a function of t. 2

The angles A, B and C are consecutive terms in an arithmetic series. Show that 3

cos(A) cos(C) — cos?(B) = sin(4) sin(C) — sin?(B).

END OF EXAM
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Candidate Name/Number:

Multiple choice answer page. Fill in either A, B, C or D for questions 1-10.

This page must be handed in with your answer booklets

1 6.
2. 7
3 8.
4. 9
S) 10.
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STANDARD INTEGRALS
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